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Our main objective is to identify a boundary-value problem capable of describing the 
dynamics of fluids having moving contact lines. A number of models have been 
developed over the past decade and a half for describing the dynamics of just such 
fluid systems. We begin by discussing the deficiencies of the methods used in some 
of these investigations to evaluate the parameters introduced by their models. In this 
study we are concerned exclusively with the formulation of a boundary-value 
problem which can describe the dynamics of the fluids excluding that lying 
instantaneously in the immediate vicinity of the moving contact line. From this 
perspective, many of the approaches referred to above are equivalent, that is to say, 
they give rise to velocity fields with the same asymptotic structure near the moving 
contact line. Part of our objective is to show that this asymptotic structure has only 
one parameter. A substantial portion of our investigation is devoted to determining 
whether or not the velocity field in a particular experiment has this asymptotic 
structure, and to measuring the value of the parameter. 

More specifically, we use the shape of the fluid interface in the vicinity of the 
moving contact line to identify the asymptotic structure of the dynamics of the fluid. 
Experiments are performed in which silicone oil displaces air through a gap formed 
between two parallel narrowly-spaced glass microscope slides sealed along two 
opposing sides. Since we were unable to make direct measurements of the shape of 
the fluid interface close to the moving contact line, an indirect procedure has been 
devised for determining its shape from measurements of the apex height of the 
meniscus. We find that the deduced fluid interface shape compares well with the 
asymptotic form identified in the studies referred to above ; however, systematic 
deviations do arise. The origin of these deviations is unclear. They could be 
attributed to systematic experimental error, or, to the fact that our analysis (valid 
only for small values of the capillary number) is inadequate a t  the conditions of our 
experiments. 

1. Introduction 
Moving contact lines, the leading edge of a liquid spreading (or receding) across the 

surface of a solid, are quite common. However, their influence upon the dynamic 
behaviour of a fluid body can range from significant to ignorable. For this reason we 
begin in 8 1.1 with the simple well-known example of the rise of liquid in a vertical 
capillary to illustrate when and why the materials in the immediate vicinity of the 
contact line can have a major influence on fluid bodies. However, quantifying this 
influence under dynamic conditions has proved to be a challenge, the main reason 
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being that the physics governing the behaviour of the fluids near the contact line is 
unknown. In $1.2 we discuss the two main approaches which have been pursued over 
the past fifteen years to model the behaviour of the fluids near the moving contact 
line. Quantitative comparisons between theory and experiment for one of these 
approaches, i.e. allowing viscous fluids to slip on the solid surface, are discussed in 
detail in s1.3. This subsection provides the motivation for the present study, We 
conclude with a statement of our objectives and a brief description of subsequent 
sections. 

1.1. The role of the contact angle 
There is little doubt of the importance of the nature of the two immiscible fluids near 
the contact line under both dynamic and static conditions. The most obvious cases 
occur when the influence of surface tension cannot be ignored, resulting in the 
necessity of specifying boundary conditions for the shape of the fluid interface a t  the 
contact line. 

Under static conditions this can be illustrated in a straightforward manner by 
considering the problem of determining the height of the liquid in a vertical capillary 
of very small radius, r,, when its lower end is submerged beneath the horizontal 
air-liquid interface in a bath of liquid. The pressure field within the liquid, combined 
with the normal component of the dynamic boundary condition 

CT n. Tn = -, 
Rm 

requires the shape of the interface within the capillary to closely approximate a 
segment of a sphere, the pressure of the liquid in close proximity to the fluid interface 
being roughly constant. Here, CT, n, Rm and T denote the surface tension, unit 
outward normal, mean radius of curvature of the fluid interface, and the stress 
tensor, respectively. The radius of the sphere is determined by the contact angle 
boundary condition, 0, its value being a direct consequence of the interactions 
among the liquid, air and solid in the immediate vicinity of the contact line. If the 
column of liquid arrives at its final position by rising (descending) through the 
capillary then the advancing (receding) contact angle, 0,(0,), should be used. (It is 
possible to manipulate the system so that any contact angle can be achieved 
consistent with static conditions, i.e. 0 E [Or, 0J.) Upon balancing the forces exerted 
on the column of liquid above the surface of the bath, the following expression for 
the height of rise, H ,  is obtained 

2a cos 0 
H =  , 

P P ,  

where p and g denote the density of the liquid and the gravitational constant, 
respectively. Hence, the liquid rises to substantial heights, i.e. H + 1, in systems 
characterized by very small static contact angles ; in systems with static contact 
angles near go", the column of liquid hardly exists a t  all, H x 0. Thus, the nature of 
the materials (the identity of the two fluids, and the finish of the surface of the solid) 
in the immediate vicinity of the contact line can have a major impact on the 
macroscopic state of a system through the influence of the contact angle. 

Under dynamic conditions the situation is similar, although not nearly as 
straightforward. Upon a cursory inspection of the usual hydrodynamic equations 
and boundary conditions, it appears that nothing basic has changed. Since the right- 
hand side of (1.1) remains the same as the static case, retaining the contact-angle 
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boundary condition a t  the contact line is justified. However, under dynamic 
conditions a singularity appears a t  the moving contact line. Analyses of liquids 
spreading over solid surfaces are characterized by stress tensors that behave as l l r  
as r approaches zero when assuming the presence of Newtonian incompressible fluids 
obeying the no-slip boundary condition at  solid surfaces. Here, r denotes the shortest 
distance to the contact line. Consequently, (1  . l )  is so singular a t  the contact line that 
the contact-angle boundary condition cannot be satisfied ; refer to Dussan V. (1979) 
for a general discussion. t The inadequacy of the usual hydrodynamic assumptions 
has also been demonstrated through a dimensional analysis of data obtained in an 
earlier version of the experiments to be presented in this study (Ngan & Dussan V. 
1982). There we reported measuring a dependence of h l a  (apex heightlhalf gap 
width) on a and on contact line speed, U ,  for liquid displacing air between two 
narrowly spaced parallel plates ; however, dimensional analysis based upon the usual 
hydrodynamic assumptions does not predict a dependence of h / a  on a dimensionless 
parameter containing a for the conditions of the experiment. Thus, both theory and 
experiment indicate the necessity of an investigation into the nature of the dynamics 
of the fluids near the moving contact line. 

1.2. Removal of the singularity at the moving contact line 
Generally speaking, studies of the dynamics of the fluids in the immediate vicinity 
of the moving contact line fall into one of two categories, which can be identified 
according to the mechanism introduced to eliminate the singularity mentioned 
above. Either, (i) a very thin film of advancing liquid is assumed to be present over 
the solid, spreading well ahead of the apparent location of the contact line, or, (ii) 
both fluids are permitted to slip along the solid wall. The occurrence of the former 
for specific material systems was first demonstrated by Hardy (1919) by investigating 
the behaviour of drops of acetic acid placed on glass in a dry air environment. The 
detection of the film consisted of measuring the static friction of the surface of the 
glass. Since then, more sophisticated techniques have been used such as inter- 
ferometry and ellipsometry to probe the shapes of these films (Bascom, Cottington 
& Singleterry 1964; Ausserre, Picard & Leger 1986). Theoretical studies of the 
dynamics of the liquid within these films consist of including long-range 
intermolecular forces in the form of a disjoining pressure in the Navier-Stokes 
equation (refer to the review by de Gennes 1985). However, the inclusion of 
conservative body forces alone in the Navier-Stokes equation cannot eliminate the 
singularity (Dussan V. & Davis 1974); it  merely shifts its location to the moving 
contact line situated a t  the leading edge of the precursor film. Ad hoc assumptions 
must still be made about the dynamics of the fluid a t  the leading edge of the 
precursor film in order to completely describe the spreading of liquids on solid 
surfaces. This latter point has not received much attention. 

The other approach to remove the singularity, permitting the viscous fluids to 
undergo a substantial amount of slip along the surface of the solid in the immediate 
vicinity of the moving contact line, in our opinion has been motivated as much by 
its mathematical simplicity as by its physical relevance. Over the years a variety of 
slip boundary conditions have been used, the most popular being the one introduced 
by Navier in 1823 

7 .  Tn = Dz. u. (1.2) 

t The claim of Pisrnen & Nir (1982) that an ignorable singularity can arise when 0, = K has been 
shown to be erroneous (Ngan & Dussan V. 1984). 
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Here, n denotes the unit outward normal to the solid ; t is defined to be u/lul; /3, a 
constant, is often referred to as the slip coeficient. Goldstein (1938) points out that 
in the nineteenth century, when the appropriate boundary conditions for the then 
newly formulated Navier-Stokes equation were being identified, logic dictated that 
the boundary condition between a viscous fluid and solid should reflect, in part, the 
chemical composition of the fluid and the solid, as well as the roughness of the solid 
surface. The no-slip boundary condition was gradually adopted only after much 
debate, the justification being the accuracy to which it predicts experimentally 
observed laminar flow regardless of the identity of the materials and the finish of the 
solid surface. The most notable exception, as demonstrated by Maxwell, occurs for 
rarefied gases, in which case (1.2) is in agreement with experiments. 

Goldstein ( 1938) considers only one-component fluid systems. Apparently, the 
appropriate boundary condition for a multi-component (miscible) fluid system is as 
yet not known. Jackson (1977) points out in a review restricted to viscous gases that 
using the no-slip boundary condition on the mass averaged velocity, the velocity 
appearing in the Navier-Stokes equation, can lead to substantial error. 

Richardson (1973) gives some insight into the success enjoyed by the no-slip 
boundary condition through an analysis of the influence of roughness of the solid 
surface on the velocity field. The roughness was idealized by a one-dimensional 
periodic structure. Although he applies the shear-free boundary condition to the 
fluid-solid boundary, the velocity field generated away from the solid corresponds to 
that of a fluid obeying the no-slip boundary condition. Recently, Jansons (1988) has 
examined the effect of a sparse randomly roughened solid surface, thus removing the 
necessity of assuming a highly idealized structure at the solid surface. His results 
indicate that random structures are more effective than one-dimensional periodic 
structures in generating an apparent no-slip boundary condition. 

Hocking (1976), motivated by a desire to derive an expression for p appropriate for 
systems containing moving contact lines, extended Richardson’s model (although 
their analyses differ quite a bit) to include the presence of a second immiscible fluid 
(gas or liquid) within the troughs of the one-dimensional periodic structure on the 
surface of the solid. This he assumes corresponds to the state of the surface 
downstream from the contact line when some of the receding fluid fails to be 
removed. However, the derivation presumes that the lengthscale associated with the 
velocity field is large compared to the periodic structure modelling the roughness, a 
condition violated in the immediate vicinity of the moving contact line when ( 1  2)  is 
used as a boundary condition (Hocking 1977 ; Huh & Mason 1977). (Hocking (1977), 
Richardson (1973) and Jansons (1988) assume in their analyses that the velocity 
approaches a constant, unidirectional, translationally invariant shear away from the 
solid. Presumably, this limits the use of their derivations of p to situations having, 
at most, small changes in velocity along the solid surface.) Other shortcomings exist, 
as pointed out by Hocking, e.g. not taking into account the inherent unsteadiness of 
the velocity field associated with contact lines moving over rough surfaces, especially 
when the surfaces contain grooves with sharp edges, as do some of Hocking’s models. 
This latter point has been pursued by Jansons (1986). His calculations indicate that 
locally unsteady motion a t  the moving contact line owing to surface roughness 
justifies the use of a slip boundary condition with a velocity dependent slip length, 
its size being larger than the scale of the roughness. 
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1.3. Quantitative comparisons between experiment and theory assuming the Jluid slips 
at the solid surface 

Despite the lack of physical justification, Navier’s boundary condition has been used 
to analyse fluid mechanics problems containing moving contact lines (Hocking 1976, 
1977; Huh & Mason 1977; Lowndes 1980; Hocking 1981; Hocking & Rivers 1982; 
Hocking 1983 ; Bach & Hassager 1985). These include immiscible fluid displacement 
through capillaries and between two parallel plates, drops spreading symmetrically 
on a horizontal surface, and the steady motion of a two-dimensional drop down an 
inclined plane. In  each case, values must be specified for two parameters arising from 
the model a t  the moving contact line : the contact angle, 0, and the slip coefficient, 

The most desirable approach for obtaining values of the contact angle would be by 
direct measurement under relevant dynamic conditions for the particular material 
systems of interest. However, the theoretical analyses indicate a rapidly changing 
interfacial slope within very small distances of the moving contact line. Thus 
measurements of the shape of the fluid interface would have to be made on the slip 
lengthscale, L,, (defined as Zp/P, p denoting the dynamic viscosity of the fluid)t in 
order to determine the value of the contact angle. Since those analyses whose results 
have been compared with experiments use values for the slip length - usually 
rationalized to be close to the molecular lengthscale -of lo-’ cm (Huh & Mason, 
Lowndes), lo-’ to cm (Cox 1986), the shape of 
the fluid interface would have to be scrutinized on the submicrometre lengthscale in 
order to be able to extract the value of the contact angle. This makes an experimental 
determination of the contact angle under dynamic conditions infeasible with an 
optical microscope. Since dynamic contact angles on such small lengthscales have 
not been measured, assumptions must be made. By far and away, the most common 
assumption has been that the contact angle is always equal to its static advancing 
value, 0, (all of the experiments involved advancing liquids). The degree of 
agreement between theoretical predictions and experimental measurements is 
usually cited as evidence justifying this approach. 

Even if there were no systematic deviations between the experimental data and 
the theoretical predictions, it would still be appropriate to examine the procedure by 
which theory and experiment are compared. As noted above, the dynamic contact 
angle in all of these studies is assumed to be O,, the static advancing angle. The 
criterion employed by Huh and Mason, Lowndes, and Cox for determining the value 
of the slip coefficient consists of requiring the theoretically predicted value of the 
apparent contact angle to coincide with its experimentally measured value. The fact 
that the same value of the slip coefficient can be used over a range of contact line 
speeds is cited as evidence establishing agreement between theory and experiment. 
However, the conclusiveness of this line of reasoning is not a t  all obvious. At every 
contact line speed there are two unknowns, the contact angle and the slip coefficient. 
Hence, the necessity for two measurements a t  every contact line speed seems 
apparent. It is only after having determined the values of the contact angle and the 
slip coefficient a t  every speed of interest that one is in a position to assess the degree 
to which they depend on the speed of the contact line. 

P. 

cm (Hocking & Rivers), and 

t Although Bach & Hassager strongly imply in their introduction that they use ( l . Z ) ,  an explicit 
equation containing their slip coefficient is never given. Elsewhere, refer to the top of p. 178 and 
to p. 181, statements are made implying the implementation of a slip condition only at the contact 
line. 
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Bach & Hassager, in fact, determine the contact angle and slip coefficient from two 
experimental measurements. Specifically, they restrict their attention to one 
particular contact line speed and use the apparent contact angles measured at  two 
different plate separations in an earlier set of experiments reported by us (Ngan & 
Dussan V. 1982). They find that using a contact angle of 35" and a slip length of 
2.8 x lop4 cm (obtained by multiplying their slip number, Bs, by a, the half gap 
width) gives rise to apparent contact angles of 54" and 63" for half gap widths of 
0.005 cm and 0.035 cm, respectively, for silicone oil (10 poise) displacing air from 
glass a t  a contact line speed of 0.04 cm/s. These angles are within k 1.5" of the 
experimentally reported values. However, in order to  establish the validity of the 
theory, the predictive power of these values of the contact angle and slip length should 
be demonstrated. This could have been done by Bach & Hassager if they had used 
these values of the contact angle and slip length to calculate the apparent contact 
angle a t  a half gap width of 0.060 cm, the experimentally reported value in Ngan & 
Dussan V. being 65". 

More definite conclusions can be drawn from the comparisons between theory and 
experiment if the dynamics of the fluid can accurately be described by the 
asymptotic limit correct to (including) O(pU/a)  as ~ U / ( T +  0 holding L,/a fixed, with 
L,/a 6 1. It will be shown in $2 that  under these restricted conditions the dynamics 
of the fluids in the outer region depends on 0 and L, only through the one parameter 

2 sin 0 a 
@+@( a ~ - c o s ~ s i n ~ [  

ln-+l L, ] +Zi(0) } . 
Here, the outer region refers to all the fluid excluding that residing instantaneously 
in the immediate vicinity of the moving contact line. The latter region is usually 
referred to as the inner region. The lengthscales of these two regions are denoted by 
a and L,, respectively. The term Zi(0) depends directly on the form of the slip 
boundary condition, the parameter specified above being valid for other slip 
boundary conditions besides Navier's. Thus, under these restricted conditions, it is 
impossible to  deduce unique values for 0 and L, from measured characteristics of the 
flow field associated with the outer region, e.g. from the drag on any segment of the 
solid (even including a segment containing the moving contact line), or from a 
detailed description of the shape of the fluid interface. In  fact, it is even impossible 
to deduce the appropriateness of Navier's slip boundary condition as opposed to 
those of others. On the other hand, this also implies the necessity of making only one 
comparison between theory and experiment a t  every contact line speed of interest in 
order to determine the value of this one parameter. Additional comparisons can then 
be viewed as providing tests by which the appropriateness of the slip boundary 
condition can be assessed. Thus, the very close agreement of the two comparisons 
between theory and experiment made by Bach & Hassager a t  the single contact line 
speed can be cited as evidence supporting the use of a slip boundary condition in fluid 
mechanics problems containing moving contact lines (provided, of course, that the 
conditions of the experiments of Ngan & DussanV. correspond to the restricted 
conditions described above). 

The objective of this study is to explore the extent to which the boundary-value 
problems defined in the outer region, correct to (including) O(,uU/a) in the limit as 
,uU/a+O holding L,/a fixed for L,/a 4 1, describe the dynamics of a fluid body 
containing a moving contact line. I n  $2 the behaviour of the fluid within the 
matching region is examined since i t  provides boundary conditions for the dynamics 
of the fluid in the outer region. It is shown that the dynamics of the fluid within the 
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matching region depends upon the form of the slip boundary condition and the value 
of the contact angle through only one measurable parameter. It is also established 
that our objective can be achieved by comparing the experimentally measured shape 
of the fluid interface in the outer region as r -+ 0 to its known form in the matching 
region. Since we are unable to make measurements of the shape of the fluid interface 
so close to the contact line, an indirect procedure for making this comparison is 
employed. This requires the formulation and solution of the boundary-value problem 
for the outer region associated with our experimental apparatus, refer to $53 and 4, 
respectively. The experiments are presented in $5.  In $6, the data and analysis are 
combined to deduce the shape of the fluid interface within the matching region. We 
end with a discussion of our results in $7.  

2. Parameterization of the outer region 
The objective of this section is to show that the effect of the moving contact line 

on the dynamics of the liquid in the outer region, correct to O(,uU/u) in the limit as 
,uU/a+O, holding L,/a fixed for L,/a G 1, can be expressed in terms of one 
measurable material property of the system. The importance of this is clear: it 
enables predictions to be made about the dynamics of the fluids without knowing the 
physics of the fluids in the immediate vicinity of the moving contact line. Since 
determining the dynamics of the liquid correct to this order is not novel, we shall 
make free use of the already well-known asymptotic structure of the solution (refer 
to the work cited in $1.3 that use asymptotic methods, or, in the remainder of this 
section). Of the three dependent variables (interface shape, pressure field and 
velocity field) whose behaviour is sought in the outer region, it suffices to restrict our 
attention to the equations which describe the interface shape because they contain 
all the non-zero constants determined by matching (this includes the unknown 
pressure datum). Thus, we shall restrict our attention to examining the asymptotic 
structure near the moving contact line of only the solution for the interface shape. 
This section begins with an identification of these unknown constants and a review 
of their determination. We proceed by identifying the specific measurable material 
property referred to above, relating it to the parameter cited in $1, and using it to 
parameterize the solution in the outer region. The latter implies that measurements 
in the outer region cannot determine the individual values of the contact angle, the 
slip length, nor the details of the slip model. However, this does not preclude the 
ability to make predictions of the dynamics of the fluids on lengthscales large 
compared with the slip length. 

The identification of the unknown constants and their determination can both be 
accomplished upon recalling the asymptotic forms of the solution for the interface 
shape in the inner and outer regions. It is convenient for these discussions to specify 
the shape of the interface in the form of the variation of its slope, 8, with distance 
from the contact line, r .  Here, 8 specifically denotes the angle formed between the 
local plane tangent to the fluid interface and the plane tangent to the solid wall. The 
asymptotic form of 8(r )  in the matching region obtained from the solution valid in 
the inner region has been found to be: 

valid as r/L,+ co. The usual method of solution in the inner region involves an 
expansion of the boundary conditions a t  the fluid interface about the plane 
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intersecting the solid a t  the contact line a t  angle 0. As examples: Hocking (1977) has 
calculated the value for Zi(0) (equivalent to h,/sinO in his notation) for the case of 
Navier’s model (also refer to Hocking & Rivers 1982) ; Dussan V. (1976), her analysis 
restricted to the case 0 = in, found that li(in) = 0 for a family of slip models with 
wide-ranging characteristics. (As a consequence of her modelling assumption that any 
dependence of 0 on U should be expressed as a dependence of 0 on ,uU/u, the 
additional term q5010(0) appears. Our current approach regards O( U )  as introducing 
a velocity scale which reflects the physics responsible for determining the value of the 
contact angle; consequently, the term q5010(0) should be ignored.) On the other hand, 
the solution valid in the outer region gives: 

valid as r/a+0.  Here, O,, denotes the slope of the interface correct to  O(1) as ,uU/ 
u + 0, evaluated as r / a  -+ 0. (The interface a t  this order satisfies the same equation as 
that of a static interface shape, and is independent of LJa.  It also represents the 
location in space about which the boundary conditions applied a t  the fluid interface 
for the outer problem are ‘perturbed’.) Likewise, O,, denotes the slope of the O(Ca) 
‘correction ’ to the interface shape, valid as p U / u  -+ 0, and to lowest order as L,/a + 
0, evaluated as r /a+0.  The equation governing this mode is identical to that 
governing the ‘ corrections ’ to the interface shape under static conditions when the 
value of the contact angle has been perturbed by a small amount, Effects arising 
from the viscosity of the fluid in the outer region first appear in the v1 mode. The 
function lo(@,,) appearing in this mode shall be regarded as known, its explicit form 
depending on the dynamics and shape of the fluid in the outer region. The unknown 
constant c represents the pressure datum associated with the motion of the fluid a t  
this order. Note that all of the unknown terms in the above two expressions for 
0, consisting of O,,, v, O,,, v,, and c ,  occur in the outer solution, indicating in some 
sense that ‘matching transfers information from the inner to the outer region’. 
Matching gives : 

2 sin 0 a 
O,, = 0, voO,, = ln-, v1 = 1, c = Z t - Z o .  

@-sin 0 cos 0 L, 

Thus, knowledge of each term 0, L,, and li is required in order to  determine the 
individual modes in the solution for 8 valid in the outer region. An important 
additional consequence of matching not included in this presentation - correct to the 
orders of ,uU/u and LJa  considered above - is the coincidence in the location of the 
contact line as perceived from both the inner and outer regions. 

The material property of the system which shall be used to parameterize the 
dynamics of the liquid in the outer region is the slope of the interface, OR,  evaluated 
at  a known small distance, R, from the moving contact line. It is essential that R lies 
within the matching region in order for OR to be both in the outer region and a 
material property of the system (in the inner region). In  order to identify a 
parameterization of the boundary-value problems arising in the outer region we 
begin by expressing (2.1) in terms of R and OR,  giving 

2 sin OR r e - oR+pu/u In%, OR -sin OR cos OR (2.3) 
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where 
2 sin 0 R 

0,- ~ + p u l n ( B _ s i n ~ c o s 0 [  ln-+l L, ] +1,(0) } , 
keeping in mind that these expressions are only valid to O(pU/u)  as pula + 0. Note 
that this implies the parameter cited in $ 1  is equivalent to 

2 sin 0, a 
0, -sin 0, cos 0, 0, +pula 

an expression entirely in terms of experimentally measurable quantities. Thus, an 
obvious parameterization of the boundary-value problems arising in the outer region 
is : 

8, - 0, asr+O, ( 2 . 4 ~ )  

2 sin 0, r 
R 

ln- asr-tO, 
0, -sin 0, cos 0, 81 - (2.4b) 

where 8 - 8, +pU/cr O1 + . . . , ( 2 . 4 ~ )  and (2.4b) representing boundary conditions for 
the boundary-value problems arising in the outer region at  0(1) and O ( p U / u ) ,  
respectively. 

Parameterizing the boundary-value problems in the outer region in terms of 0, is 
not novel. It was originally used by Hansen & Toong (1971); however, their 
implementation and justification were somewhat different. They correctly an- 
ticipated the lowest-order asymptotic form of the velocity field as r la  + 0, i.e. as the 
location of the contact line is apFroached from the outer region, without any 
reference to modelling the physics governing the movement of the fluids in the 
immediate vicinity of the moving contact line. This approach was further pursued by 
Kafka & Dussan V. (1979). Their motivation was the same as that outlined above, 
although the details of their parameterization was slightly different. 

3. Formulation 
The objective of the analysis is to derive a relationship between the apex height, 

h, and the value of the intermediate contact angle, OR,  for the case of a viscous liquid 
displacing air between two parallel solid surfaces. As stated in $2, we need only 
analyse the dynamics of the fluid in the outer region. The system is viewed from a 
frame of reference a t  rest with respect to the moving contact line; thus, the two 
parallel solid surfaces, separated by a distance 2a, appear to be moving at a constant 
speed, U,  in the z-direction (the convention implies that the solid surfaces move 
downward in the -2-direction when U > 0). The origin of the coordinate system is 
located midway between the two plates and in the plane passing through the contact 
lines. The x- and z-axes point in the directions indicated in figure 1. The system is 
assumed to be at steady state in this frame of reference, with the dynamics of the 
fluid independent of the y-direction. 

Scales are chosen to reflect the fact that we are interested in the case of a liquid 
displacing, or being displaced, by an immiscible fluid whose motion can be ignored. 
The dimensional position vector, velocity vector, and pressure field are denoted by 
(xu, m), (uU, wU), and pula ,  respectively ; u denotes the surface tension. The pressure 
scale reflects the fact that we are focusing attention on situations in which the 
stresses due to surface tension dominate those due to  viscosity. 
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FIGURE 1. The configuration of half the system. The remainder is obtained by forming the mirror 
image about the (z = 0)-plane. The coordinate system (5, z )  is in a frame of reference a t  rest with 
respect to the moving contact line. 

The governing equations and boundary conditions are as follows. The dimen- 
sionless form of the Navier-Stokes and continuity equations are 

ReCa{u + Vu} = -Vp+CaV2u-Bdk, 

v * u = 0 ,  

where u denotes ( u , w ) ;  Re denotes the Reynolds number, Uaplp; Ca denotes the 
capillary number, Uplv;  Bd denotes the Bond number, pgaZ/u. In these expressions, 
p and p denote the density and viscosity of the liquid, respectively, and g denotes the 
gravitational constant, approximately equal to 980 cm/s2. The group Re Ca is often 
referred to as the Weber number. The kinematic and dynamic boundary conditions 
at the free surface are 

u * n = 0 \  
at z = f(x) ( - 1 < x < l),  

Tn = - 

where n denotes the unit outward normal from the liquid; T denotes the stress 
tensor; (2, f(x)) denotes the position of the free surface; Rm denotes the mean radius 
of curvature of the fluid interface 

d2f  
1 dx2 

The boundary conditions a t  the two parallel solid surfaces are 

u = - k  a t x = + l ,  z < 0 ,  

where i t  is assumed that U > 0 for the liquid advancing over the solid, with the liquid 
located at positions {(x, x )  I - 1 < x < 1, - < z <f(x)}. It is assumed that the far- 
field solution, i.e. the velocity and pressure fields as z+- -Go,  approaches two- 
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dimensional Poiseuille flow. Finally, as presented in $2, it is assumed that the slope 
of the interface has the following asymptotic structure as (x, z )  approaches ( f 1,0),  
the locations of the contact lines, 

2 sin 0, 
0, -sin 0, cos 0, 

((1 T X ) 2 + 2 ) f  

R l a  
6 - 0,+Ca In 3 

where tan (6-in) = df/dx. The fact that 6 equals infinity a t  the contact line does not 
make this boundary condition unphysical because we are analysing the dynamics of 
the fluid in the outer region, i.e. the solution is not valid at (x, y) equals ( IfI 1 , O ) .  

We seek a solution valid in the limit as Bd,  Ca, and Re approach zero. It is assumed 
that the dependent variables can be represented as a regular asymptotic expansion 
of the form 

V -  V, (X ,Z )+B~~B~B~(X ,Z)+CU~~ ' , , (X ,Z )+R~VR' , , (X ,Z )+  ..., (3.1) 

valid as Bd, Ca, and Re approach zero, where { VI u , p ,  f}. A solution will be obtained 
to lowest order, V,, for each of the dependent variables, and to first order in Ca 
and Bd, i.e. V,, and VBd, for both the pressure and the interface shape. Substituting 
the asymptotic expansions into the governing equations and boundary conditions 
generates a sequence of well-posed boundary-value problems. 

3.1. Lowest-order pressure jield and interface shape 
The lowest-order pressure field and interface shape satisfy 

VP, = 0, 

d2f, 
dx2 

-Po = { 1 +%!)3'' 
subject to the boundary conditions 

a t x =  1, f o  = 0 

= 0  a t  x = 0, df, 
dx 

where the last condition reflects the fact that the shape of the free surface is 
symmetrical about the x = 0 plane. 

The solutions for p ,  and f o  are 

Po = - cos OR,  

f o  = tan 0, - (sect 0, - "2);. 

Hence, the lowest-order pressure field is constant ; the lowest-order interface shape 
is the arc of a circle. 
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3.2. First-order in Bond number for the pressure je ld  and interface shape 
The first-order pressure field and interface shape satisfy 

subject to the boundary conditions 

f B d = O  a t x =  1 ,  

- - 0  dfBd - a t x = l ,  
dx 

-- d f ~ d  - o at  x = 0. 
dx 

The solutions are 

PBd = - 2  +a tan 0, -$(in - 0) see2 OR, 

Z f B d  - tan 0, + (in - 0,) sec2 0, - x arcsin (x cos 0,) -- 
sec3 0 - 1 - (in - 0,) tan 0,. 

(secz O, - x2)t 

3.3. Lowest-order velocity je ld  and jrst-order in capillary number for the pressure 
jeEd and interface shape 

The lowest-order velocity field and leading order in capillary number for the pressure 
field satisfy : 

0 = -Vpca +v=u,, (3.4) 

Q * U, = 0. 

The continuity equation implies the existence of a stream function, $, with the 
property 

u, = (a$/az, - a$/ax). 

Substituting this representation of the velocity field into the curl of (3.4) gives: 

V4$ = 0. (3.5) 

The lowest-order form of the boundary conditions are : the kinematic boundary 
condition a t  the free surface 

$ = 0 a t  z = f,(z) ( - 1  < x < 1);  (3.6) 

the tangential component of the dynamic boundary condition a t  the free surface 

T($;0 , )=0 a t z = f O ( x )  ( - 1 < ~ < 1 ) ,  (3.7) 
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where 

d2(x; 0,) E (df*ldx)2 - 1. 
1 + (df,/dx)' ' 

the normal component of the dyn,amic boundary condition at the free surface 

- d dfcaldx 
dx { 1 + dfo/dx2}g - - -p~,+iV(@; 0,) at z = fo(x) ( -  1 < x < l), (3.8) 

where 

the boundary conditions a t  the contact line 

f c ,  = 0 a t x =  1, 

- N  

dfca 2 
dx (0, -sin 0, cos 0,) sin 0, 

the boundary conditions a t  the two parallel solid surfaces 

$ = O  a t x = + l ,  z d 0 ;  

and the stream function far from the free surface 

@+3x"x) asz+-c.€l. 

The solutions for $, pca, and f c ,  are presented in $4. 

(3.9) 

as (x,z)+(l,O), (3.10) 

(3.11) 

(3.12) 

(3.13) 

(3.14) 

4. Solutions for +, pc, andf;,, 
The boundary-value problem defined by (3.5)-(3.7), (3.9), (3.10) and (3.11) can be 

solved, a t  least in part, using k~ technique introduced by Smith (1952). Smith 
obtained a representation of the solution to the following boundary-value problem 
in the form of an eigenfunction expansion : 

V 4 x = 0  for((x,z)/-l  d x <  l , -m  < z d O ) ,  (4.1) 

(4.2) 
x = - = O  ax a t x = + l ,  - m < z < O ,  

ax 

(4.3a, b )  
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where both b,(x) and b,(x) are considered to be known functions satisfying the 
constraints lI b,(x) dx = 0, (4.5) 

1:; b,(x) xdx = 0. 

This differs from our problem in a number of significant ways. The domains of the 
two problems are not the same. Smith’s problem is defined on the domain { ( z , z )  I 
- 1 < z < 1, z < 0},  its boundaries being composed of constant coordinate curves. In  
contrast, part of the boundary of the domain of our problem, {(x, x )  I - 1 < x < 1, z = 
f o (x ) } ,  is not a constant coordinate curve. Hence, part of our method of solution 
consists of determining the specific forms of b,(x) and b,(x) on z = 0 so that $ satisfies 
(3.6) and (3.7) along ((5, z )  I - 1 < x < 1, x = fo(z)}. (Once the solution for $ has been 
obtained, its value within the region containing no liquid, {(x, z )  I - 1 < x < 1, fo(x) < 
z < 0}, is ignored.) There are other significant differences between the two problems. 
Unlike Smith’s problem, all of the following functions are inhomogeneous; a$/& at  
x = k 1, $ as z + - co , and a$/axt as x + & 1 at z = 0, which necessitates expressing 
$ as the superposition of three parts. Also, in our problem $ does not converge 
uniformly as x-t  f 1 and z+O. Thus, our method for determining b,(x) and b,(x) 
utilizes knowledge of their asymptotic forms as x-t & 1, which minimizes the 
inconveniences that would naturally arise from the non-uniform convergence of the 
eigenfunction expansion of $. 

4.1. Superposition of $, and solution of $A 

The stream function $ is represented as the sum of three parts 

2(sin 20,-20,) Y A  - 

$ A - f O  a s z + - m ,  - l < z < l .  (4.11) 

The solution for $A can readily be obtained using the Fourier sine transformation in 
the z-direction. It is given by 

2 (in tan 0,- 1) sin 20, 1 (1 -5) sinh (1 +x)  7 

‘ A  =i (sin20,-20,) l a y {  27-sinh27 

s i n z ~ d ~ .  (4.12) 
- (1 +x) sinh (1 -2) 7 

27 - sinh 27 

t To show that Smith’s problem is characterized by a$/ax = 0 a t  x = & 1 and z = 0, integrate 
(4.6) by parts. This gives a$/azl,-, = $ ( i , O ) .  The term on the right-hand side of the equation is 
zero as a consequence of (4.2), and $ being continuous over the entire domain. Asymmetry of $ 
in x has been used. 
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Hence, the function $B must satisfy 

V4$,=0  f o r { ( x , z ) l - l < x < l ,  - c o < z < O ) ,  (4.13) 

W B  

B -  ax $ - - = O  a t x = f l ,  - c o < z < O ,  (4.14) 

kB = -4(x”x)-$, 

T($B;  0,) = - 3 x d , - T ( $ ~  ; 0 R ) J  

‘1. a t  z = fo(x), - 1 < x < 1, (4.15a, b)  

$ B + O  asz-+-co, -1 < x <  1, (4.16) 

where the expressions on the right-hand side of (4.15a, b )  are considered to be known 
in light of (4.12). The determinations of the variations of $A and the second partial 
derivatives of $, with respect to x and z evaluated along z = f,(x) arising in the 
expression T($A; 0,) and N(@A; @,), refer to  (3.8), are accomplished by numerically 
integrating the inverse Fourier-sine transformation after interchanging the orders of 
differentiation and integration. Gauss-Laguerre quadrature (15 points) is used in the 
integrations over the semi-infinite domain ( -  co, 01. In each case, the asymptotic 
forms for the integrands, in the limit as the integration variable goes to infinity, are 
subtracted from the integrands and only the differences are numerically integrated. 
The integrals of the asymptotic forms can be expressed in closed form. Approximate 
solutions for $B are obtained in the next subsection using Smith’s method, suitably 
modified. 

Before proceeding, an explanation is in order for the boundary conditions given by 
(4.10 a, b) .  As already mentioned, a$/ax+O as x-+ f 1 at z = 0 in Smith’s problem. 
However, a local analysis of the velocity field in the neighbourhood of (x, z )  = (k 1, 
0) reveals that  in our problem a@/az+ 1 + (in tan 0, - 1) sin 20,/(sin 2 0 , - 2 0 R ) ,  
refer to the Appendix. Hence, Smith’s eigenfunction expansion cannot be used to 
represent $-i(x3-x). However, it can be used to represent $-4(x3-x)-$,; where 
$A satisfies (4.8), (4.9), (4.11), and with the following replacing (4.10a, b)  

a t x = O ,  - l < x < l ,  
= 9’(X)\ 

$A = &(X) J 
where gl(x) and g,(x) denote any given set of asymmetric functions, provided dg2/dx 
approaches a non-zero value as x + f 1. Choosing g1 = 0 and g2 = t (x3  - x) (&c tan 
0, - 1) sin 20,/(sin 20, - 2 0 , )  simplifies the determination of $ B .  

4.2. Solution for $B and $ 
Our method has a t  its heart Smith’s eigenfunction expansion representation of the 
solution to (4.1)-(4.4). A solution of the following form is sought 

(4.17) 

where each eigenfunction 
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and eigenvalue s, satisfies 

(4.18) 

q5 - - - 0  d$l- a t x = + l ,  z < O .  (4.19) 

Explicit forms for x are obtained by integrating twice either scalar equation given by 
(4.17). For example, integrating twice the first equation in (4.17) with respect to 2, 

and using (4.4) gives 

' - dx 

(4.20) 

The solutions to (4.18) and (4.19) consist of both even and odd functions of x. We 
need only the odd functions 

$,(x; s,) = +s,{(l -x) sin (1  +x) s,- (1 +x) sin (1 -x) sn}, 

q q x ;  8,) = + cos (1 -2) s,- cos (1 +x) s,, 

for sin2s, = 2s,, excluding so = 0. If {s,} denotes the eigenvalues located in the 
positive orthant, then the complete set of eigenvalues consists of 

(8,) U {g,} U {-sn> U {-~n). 

The eigenvalues (8,) are determined to machine precision by a standard New- 
ton-Raphson procedure. Initial guesses are obtained from their asymptotic form as 
n+co 

29, - (2n+;)n+i ln(4n+l)n.  

Convergence is extremely fast, no more than three iterations are required. The 
boundary condition denoted by (4.4) implies that 

(4.21) 

where Re denotes the real part of a complex function. The constants {c,} can be 
regarded as the expansion coefficients of b, and b, in terms of the eigenfunctions 

El 
as can be seen by setting z = 0 in (4.21) and making use of (4.3a, b ) ,  giving 

The constants {c,} are determined by taking the inner product of 

kl 
with the eigenfunctions of the adjoint problem [$! $:I, giving 

(4.22) 

(4.23) 
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where 

and 

(4.24) 

(4.25) 

(4.26) 

The solution to (4.24) and (4.25) is 

with the same set of eigenvalues as before. Substituting the above into (4.26) gives 

k, = - 4 sin4 s,. (4.28) 

This completes the solution to Smith’s problem. Discussions of existence, 
convergence, and completeness can be found in Joseph (1977), Joseph & Sturges 
(1975, 1978), Gregory (1980a, b)  and Joseph, Sturges & Warner (1982). 

The function x identified above represents the solution for $B in our problem, 
provided (4.15a, b)  are satisfied. This is accomplished by using the appropriate 
functions for b,(x) and b,(x). In  order to determine the values of b, and b,, we begin 
by assuming that they can be expressed as follows 

(4.29) 

The second term on the right-hand side of (4.29) is chosen so that the series 
containing the unknown constants {en} converges uniformly as x +  &- 1, refer to the 
Appendix. It follows from (4.22), (4.23), ( 4 . 2 7 ~ ~  b)  and (4.28) that 

[l-cos2s,-snSi(sn)]sin20, 
n-l (sin 20, - 20,) sin4 s, [ J} 

(4.30) 

42 sin 20, 

where X i  denotes the sine integral (Abramowitz & Stegun 1964). The expansion of$,, 
follows directly from (4.20) and (4.30) and is given by 

The relationships which {en} must satisfy are generated by substituting (4.31) into 
(4.15a, b)  
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where D, = (2d,/s,)d$,/dx+d2( -$2+q51) .  All the terms on the right-hand side of 
(4.32) are known functions of x. 

The set of unknown constants {en} are determined in the following manner. The 
series on the left-hand side of (4.32) is terminated at  n = N ,  for varying values of N 
between 1 and 10. A set of N linearly independent equations are obtained by 
requiring the remainder of the series to be orthogonal to the set of vectors 

{['$/,""]In= 1, ..., N 1 
The ad hoc assumption is made that the constants {e: I n = 1, . . . ,N) are real.? The 

superscript has been included to distinguish between the different approximate 
solutions. The resulting set of equations are 

N 

ZM6,e,N=di f o r j =  1 ,..., N ,  
6-1 

(4.33) 

where 

and 

,} Re {e6jf~(")D,}] dx. 
[ 1 - cos 2s, - s, Xi(s,)] sin 20, esnf0(")D 

(sin 20, - 20,) sin4 S, 
+Re{ 

The most inconvenient aspect of the problem is the slow convergence of the infinite 
series appearing in the expression for {d,} as x-+ k 1, resulting from the decreasing 
influence of the negative exponential as f,,(x) approaches zero. Gauss-Legendre 
quadrature is used to numerically integrate the terms in {2M,,} and {d,}. The first 
hundred values of { 1 - cos 2s, - s, Si(s,)} are determined by a straight-line in- 
tegration between eigenvalues using the 20-point Gauss-Legendre quadrature 
routine modified for complex variables. The remaining terms are obtained by 
evaluating the asymptotic form of the sine-integral. For each series appearing in 

t This assumption was not made intentionally. It arose as a consequence of the scheme we 
followed to identify the best set of trail functions t o  expand 

I 41: sin 20, [::I- [(sin 2 0 , - 7 , )  (1 -x2) , 

All of our calculations were completed when we realized the lack of necessity, also the lack of 
desirability, of this assumption. 
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I 

0 I 

FIGURE 2. The lowest-order stream function $ o ( x , ~ ; @ R , N )  on z =fo(x) for 8, = 30' 
and {Nl 1,5,10}. 

X 

(4.33), the asymptotic forms of the n term is subtracted from the n term, and only 
these differences are summed numerically ; closed form expressions are obtained for 
the summations of the asymptotic forms. This accelerates the convergence of the 
part of the series summed numerically. Note that a good solution in the 
neighbourhood of the contact line is needed because the contact-angle boundary 
condition is imposed on the interface in this region. The matrix inversion routine 
used to solve (4.33) is a double precision algorithm that utilizes Gauss-Jordan 
elimination with the maximum pivot strategy (White 1983). 

As already stated, (4.33) has been solved for N varying from 1 to 10. Figures 2 
and 3 give the evaluation of (3.6) and (3.7) for 0 < x < 1, respectively, a t  0, = 30°, 
that is, $ = 0, and T($ ; 30') = 0 a t  z = fo(x) for 0 < x c 1.  We choose this value of 0, 
for illustrative purposes because it is typical of the values used to analyse our 
experimental results. It is evident from these figures that even the solution 
corresponding to the case when N equals 10 has an error. The improvement in 
satisfying (3.7) is evident as N varies in value from 1 to l0 , t  but there is only a small 
improvement in satisfying (3.6). We feel that the most likely cause is the ad hoc 

t Although there appears to be a large error in satisfying (3.7) as x+ 1, the relative error is 
actually small. This is a consequence of the rapidly increasing value of the components of the stress 
tensor as x + l .  
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assumption discussed above that (e: I n = 1, . . . , iVj are real. The complete solution for 
the stream function is 

2(+n tan 0,- I)  sin 20, (1 -z) sinh (1 +x)  7 

~(sin20,-20,) 27 - sinh 27 

-&x3-z) sinnd7++(z3-x) 3 - (1 +x) sinh (1 -x) 
27 - sinh 27 

4.3. Solution for p,, 

The first-order pressure field is obtained by substituting (4.34), the solution for $, 
into (3.4) and integrating. This gives 

sin 20, sin 20, 
( - 1 +in tan 0,) 

sin 20, - 20, 
l+(- l++ntan@,)  

N 

e z  esnz[sin (1 -2) s, 1 sinh (1 +x) T +  sinh (1 -2) 7 

27 - sinh 27 

[l  - cos 28, -s, si(s,)] sin 20, 
[sin 20, - 20,] sin4 s, 

+sin(l+z)s,]+ C esnz[sin (1 -2) s, 

+sin(l+x)s,] , I (4.35) 

where c p  denotes the pressure datum which is evaluated when solving for f c a ,  the first 
order interface shape. 

4.4. Solution for f c a  
The first-order interface shape is determined by (3.8). A more explicit form of this 
equation is obtained by evaluating N ( ~ ;  0,) using the solution for ~ given by (4.34); 
thus 

3( - 1 +in tan 0,) sin20, 
sin 20, - 20, 

- dfcaldx - -pCa+3d,x+ 
dx (1 + (dfo/dx)2)i - 

{ ~ A + E } s i n ~ z d ~  

[1 - cos 25, - s, Si(s,)] sin 20, es,fo(z)DN 

+2Re{ n-l : [sin 20, - 20,] sin4 s, 

where 
- C O S ~  (1 + X) T +  cosh (1 -x) 7 E E  

27 - sinh 27 2 

(1 -x) sinh (1 +x) 7 -  (1 +x) sinh (1 -x) 7 

27 - sinh 27 
A =  , 

(4.36) 

2d dq5 
s, dx 

D = JL-dl ($ l -$2) .  N -  



FIGURE 3. The 

On the dynamics of liquid spreading on solid surfaces 21 1 

on z = fo(s) 

Rla ... 

20" 
25" 
30" 
35" 
40" 
45" 
50" 
55" 
60" 

Rla . . . 
0, 
20" 
25" 
30" 
35" 
40" 
45" 
50" 
55" 
60" 

0, 
0.005 

58.0 
35.1 
23.2 
16.4 
12.2 
9.36 
7.44 
6.06 
5.05 

0.03 

28.3 
17.0 
11.3 
8.04 
6.00 
4.66 
3.74 
3.08 
2.59 

0.007 

52.1 
31.5 
20.9 
14.8 
10.9 
8.43 
6.71 
5.47 
4.57 

0.05 

21.0 
12.6 
8.44 
5.99 
4.50 
3.51 
2.83 
2.34 
1.98 

0.01 0.015 

46.0 39.2 
27.8 23.7 
18.4 15.7 
13.0 11.1 
9.67 8.27 
7.46 6.39 
5.94 5.10 
4.86 4.18 
4.06 3.50 

0.07 0.1 

16.7 12.6 
10.0 7.58 
6.68 4.67 
4.78 3.65 
3.60 2.77 
2.83 2.19 
2.29 1.79 
1.91 1.49 
1.62 1.27 

0.02 

34.5 
20.9 
13.8 
9.81 
7.30 
5.66 
4.52 
3.71 
3.12 

0.15 

8.77 
5.26 
3.22 
2.58 
1.98 
1.59 
1.31 
1.10 
0.942 

TABLE 1 .  Evaluation of f,,(O; @,, Rla) .  Rla and 0, must satisfy ( R l a )  sin 0, > 0.005. 
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The solution of fc, is obtained by integrating (4.36) twice, subject to the boundary 
conditions expressed by (3.9), (3.10) and (3.11). Since the infinite series appearing on 
the right-hand side of (4.36) and in the expression for p,, does not converge 
uniformly as x+ & 1, that is, near the contact line, special care must be taken when 
performing the two integrations. Techniques similar to those discussed in the 
subsection pertaining to the solution of @n concerning the evaluation of id,) are used. 
The inverse Fourier sine and cosine transformations are evaluated using the 
technique discussed in the subsection containing the solution of $ A .  Integration of 
the well-behaved terms on the right-hand side of (4.36) are obtained using a single 
precision version of the cubic spline routines available from the IMSL library. Refer 
to Ngan (1985) for details. 

Our primary results consist of the contribution by f,, to the apex height, that is, 
the evaluation of fc,(O; Rla,  0,) for a range of values of both Rla  and OR, refer to 
table 1.  The entries in table 1 are based upon only one trial function, i.e. N = 1 ;  
including more terms did not sufficiently increase the accuracy of the solution to 
justify the additional computer time. This indicates that a substantial portion of the 
solution for the shape of the interface comes from @ A  and the asymptotic form of $n 
as ( x , z )  approaches the location of the contact line. That is to say, the error 
associated with only approximately satisfying (3.6) and (3.7) may have only a 
marginal effect on the value of fca(O; Rla, 0,). 

5. Experiments 
5.1. Description of experiments 

As in our previous study (Ngan & Dussan V. 1982), 1000 centistroke Union Carbide 
L-45 silicone oil was used to displace air in a vertical parallel-plate geometry ; refer 
to figure 4. Silicone oil was chosen because its surface tension is relatively insensitive 
to most surface active agents; hence, contamination is a lesser concern. Cells were 
constructed of two glass microscope slides (Corning 2947 plain lot no. 100583A) 
separated by one or more stainless steel spacers (shim stock or plate of 0.01, 0.0275, 
0.07 or 0.12 cm nominal thickness) forming separations, 2a, of 0.01, 0.02, 0.0275, 
0.0375, 0.055, 0.08 and 0.12 cm. Thus, seven separations were investigated in this 
study whereas only three were investigated in the previous study. The side and 
bottom edges of the slides were sealed with PTFE tape, and 0.25 in. thick Plexiglas 
plates were used to distribute the load over the surface. The silicone oil was 
introduced into the bottom of the cell through a short length (approximately 8 in.) of 
Teflon tubing (Cole-Parmer R-6417-31 having 0.032 in. i.d. and 0.064 in. 0.d.) by a 
Sage Model 355 variable speed positive-displacement syringe pump. We did not 
observe the oscillations reported earlier when using the Harvard syringe pump. The 
experiments were performed a t  25.0 f 0.5 "C. The density and surface tension of the 
silicone oil are respectively 0.97 g cm-3 and 19.7 dyn em-'. 

The method of pretreating the slides was adapted from one used to prepare slides 
for the vapour deposition of metals. Instead of pretreating slides singly, how 
sets of slides were treated so that the entire set would be exposed to the same 
conditions. Eight sets of slides were placed through the following procedure. From a 
box containing 72 slides, 30 slides are selected a t  random, and placed, at random, 
into a polypropylene slide staining rack (Kartell 380 from Markson JD5952). The 
rack is then immersed in 500 ml of rapidly boiling distilled, deionized water, brought 
to a second boil, and then boiled for 10 more minutes. The slides are submerged into 
four additional baths, and then dried in an oven at 60 "C. The premise is that any 
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Metal spacer A Microscope slides 

- 
To syringe 

Pump 
FIGURE 4. Depiction of a cell. It is composed of two microscope slides separated by stainless steel 
spacers. Three perspectives are shown : (a) elevation (1 : i) ,  ratio of illustration to actual size; ( b )  
plan (2: 1 ) ;  and (c) section A-A of ( b )  ( 1 Z : l ) .  The arrows in (a) and ( e )  indicate the direction of 
motion of the silicone oil. 

material on the surface of the glass will partition itself between the surface phase 
and the bulk liquid, or in the case of surface active contaminants, be removed by the 
rising bubbles and carried to the surface of the liquid. After drying, the slides are 
removed from the staining racks and placed into a random slot in one of three 
microscope slide storage boxes, ten to a box (five in each half). 

In the construction of a cell, one slide from each half of one of the boxes was 
selected a t  random ; the next two cells were constructed from slides from the other 
two boxes. Hence, a total of 240 slides were pretreated and stored, 80 to a box (capacity 
loo), permitting the construction of up to 120 cells. At least 15 cells could be 
constructed for each size slot, with another 15 remaining to be used in case of leakage, 
breakage, measurement or calibration complications, and mistakes. The two staining 
racks were boiled in distilled, deionized water prior to their first contact with the 
slides. This precaution was taken in order to remove free monomer, plasticizer, or 
other extractable additives that might have been present in the polypropylene. 

The slot thickness was determined by locating the inside surfaces of the slides 
along the edges of the cell under a microscope and measuring the separation using a 
calibrated reticle. The value of the slot thickness used in the calculations for any one 
cell represents the average of ten measurements, five from each edge of the cell. An 
independent test indicates that these measurements a t  the edges give values 
comparable to those obtained from measurements near the middle of the cell. 

The movement of the interface was observed through and recorded by an optical 
system as depicted in figure 5 .  A wide-angle zoom lens (Vivitar Series I 2448 mm) 
was used in the reverse position to obtain a better image. A 35 mm camera (Nikon 
FM) was equipped with a motor drive unit (Nikon MD-11) so that images could be 
obtained a t  rates of almost four frames per second. All components except the cell 
holder were mounted on an optical rail atop a granite table; the cell holder was 
placed onto a translating stage also mounted to the table. This permitted the use of 
a fixed camera-to-lens distance because focusing could be accomplished by moving 
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Light 

the cell. Hence, for all cells, a fixed magnification of 33.75 x was obtained by using 
a focal length of 24 mm, a t  an extension of 810 mm. The images were recorded on a 
fine-grain black-and-white panchromatic film (Kodak Technical Pan Film 2415) and 
developed in a diluted high energy developer (Kodak HC-110, dilution D) for lower 
grain and higher resolution. An exposure index of 125 is expected if the film is 
developed for 8 min a t  20 "C. At these conditions, the contract index is 1.75 and the 
gamma is 2.00 (see Kodak pamphlet no. P-255 for more details.) It was found that 
slightly darker negatives were needed; hence, the film was developed for the 
equivalent of 10 min a t  20". Optical distortion, checked by photographing a stage 
micrometer, was found to  be negligible over the field of view. The stage micrometer 
was also used to provide the lengthscale for determining the actual magnification 
from the photographs. 

When backlit, and observed from the perspective depicted in figure 4(a), the 
interfaces appeared as dark bands on a bright field. These bands were horizontal in 
the field of view, indicating that edge effects due to the spacers were negligible, and 
that the plates were parallel. For the air f---f silicone oil tf glass system, the top side 
of a band is one of the contact lines, while the bottom side is the apex of the 
meniscus; hence, an apex height h can readily be determined by measuring the 
thickness of the band. 

The other quantity obtained from the photographic images was the velocity of the 
contact line. Velocities were calculated from the change in position of the contact line 
in successive frames, knowing the time interval between frames. The speed of the 
motor drive was calibrated every eighth roll (after each set of the seven different slot 
sizes). Linear interpolation was used to determine the speed for each run. The 
experiments were designed to be conducted a t  constant velocity ; uncertainty in the 
selection of the syringe pump setting and leakage were the major obstacles that had 
to be overcome. 

In all, sixty-three cells were assembled; however, data were unobtainable from six 
of these runs due to severe leakage (3), poor contrast in the photographic negatives 
(2), and an incorrect syringe pump setting (1).  Of the fifty-seven remaining cells, 
eleven each were of the 0.01 and 0.02 ern slotwidths, and seven each were of the other 
sizes. The larger number of runs were performed in the smaller slots because it is more 
difficult to obtain data a t  any pre-chosen contact line speed. These cells are prone to 
leakage and breakage due to the higher pressures developed in narrower slots. In 
addition, small leaks represent a larger fraction of the delivered flow, and hence, give 
rise to data at velocities much lower than anticipated. Note that, since data obtained 
from slots of different sizes are to be compared at the same velocity, leakage gives rise 
to data that are essentially unusable. 

A contact line speed of about 0.030 ern s-l, corresponding to a capillary number of 
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FIGURE 6. The variation of the apparent contact angles calculated from the mean dimensionless 
apex heights with the contact line speeds, U,  and the corresponding value of Cu indicated along the 
abscissa for the seven slot widths listed in the legend. 

about 0.015, was chosen as the point of comparison. A smaller Ca would have been 
preferred, but previous experiments with a nearly identical material system had 
indicated that there might be insufficient dependence of the apparent contact angle 
on the size of the slot a t  that speed to ensure a sufficient separation of the curves. The 
data from the narrower slots also seemed to be more reliable there than at  lower 
speeds. Finally, data were obtained that span a range of capillary numbers, a 
consequence of leakage, uncertainties in the determination of the contact line 
locations and frame-to-frame time intervals, and slight variations in the slotwidths 
of cells meant to be the same size. 

5.2. Experimental data 
The data are presented in figure 6. Mean values of the slotwidth and dimensionless 
apex height, % and h/a, and their sample standard deviations were calculated for 
each of the seven sizes of slots and for each capillary number interval of width 0.001. 
The mean dimensionless apex heights were converted into mean apparent contact 
angles using : 

- 2- o,,, = cos-1- 
1 + 7 i p 2 '  

Represented in the figure are 1427 points from a total of 1549 ; samples with less than 
ten points are not presented. 
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0.013 < Cu < 0.014 
%PP Q A P P  'IPP a 
40.32 42.27 44.25 0.00525 
46.87 48.64 50.44 0.01035 
48.50 50.60 52.72 0.01405 
51.51 53.15 54.81 0.01915 
54.30 55.30 56.31 0.02775 
56.71 58.18 59.66 0.04120 
57.18 59.30 61.45 0.06170 

NE 
37 
43 
26 
35 
28 
27 
19 

0.014 < Cu < 

Q i P P  @*PP @iPP  

40.82 43.92 47.10 
47.65 49.92 52.22 
48.56 51.36 54.21 
52.13 53.98 55.85 
54.66 56.08 57.51 
56.60 58.21 59.83 
57.51 59.47 61.46 

0.015 
a 

0.00525 
0.01035 
0.01405 
0.01910 
0.02770 
0.04120 
0.06170 

NE 
28 
39 
31 
40 
40 
46 
35 

0.015 < Cu < 0.016 
%PP Q*PP Q i P P  d 

45.51 46.43 47.36 0.00545 
49.43 51.69 53.97 0.01040 
49.80 53.21 56.68 0.01385 
53.07 54.69 56.32 0.01905 
55.20 56.45 57.70 0.02785 
56.71 58.39 60.09 0.04120 
57.30 59.44 61.61 0.06145 

NE 
14 
32 
22 
54 
54 
58 
71 

TABLE 2. Data pertaining to the conditional distributions of figures 7,  8 and 9. N ,  represents the 
number of data points within the particular histogram. a is the average half slotwidth in cm. 8ipp, 
SAP, and @ip,e the three __ a p p s n t  contact angles in degrees corresponding to the dimensionless 
apex heights h/u+s, ,  hla and hlu-s,, respectively. 

It should be emphasized that this figure represents the dynamic behaviour of the 
apparent contact angle for one particular material system : air tf 1000 cstk L-45 
silicone oil ++Corning 2947 glass slides. Therefore, the apparent angles are plotted 
as a function of the contact line speed. A capillary number scale is also indicated 
because it is the pertinent dimensionless group that appears in the theoretical 
analysis. 

The 779 data points falling into the three intervals of Ca ranging between 0.013 and 
0.016, enclosed by the box in figure 6, are presented as histograms in figure 7.  It is 
only within these three intervals that there are a sufficient number of points to 
calculate mean apparent angles for all seven slot sizes. In each histogram, the relative 
frequency is plotted for values of the apparent contact angle in one degree 
increments, for each type of slot. Above each histogram is a vertical dash that 
denotes the location of the apparent contact angle corresponding to hla and a 
horizontal line that denotes the range of angles enclosed by G + s H ,  sH denoting a 
sample standard deviation of G. The number of points included in each histogram, 
the average slotwidth, and the angles mentioned are listed in table 2.  

6. Determination of (R, 0,) 
An essential step of establishing self-consistency between the theory and 

experiments consists of determining the extent to which (2.3) is satisfied. Since 0, 
represents the slope of the interface at any radial distance R from the contact line 
within the matching region, the combination (R, 0,) appearing in (2.3) is not unique 
but rather forms a continuous one-parameter family of values denoted by {(R, 0,)). 
The members of this family are ( r ,  e), where 8 satisfies (2.3) and r takes on any value 
within the matching region. Direct experimental measurement of the radial 
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(4 55 

5 10 15 20 
r (vm) 

FIGURE 8. For caption see facing page. 

dependence of the slope of the interface in the immediate vicinity of the moving 
contact line would be ideal. Since this was not done we can only infer the slope of the 
interface within the matching region using the measured apex height in conjunction 
with our theoretical calculations. We begin by presenting the method adopted to 
make this inference. In  part, this requires identifying a specific range of r to be 
regarded as the matching region. The section concludes with comparisons between 
the inferred slope of the interface near the moving contact line and (2.3). 
Demonstrations of the extent to which the theory and the deduced family {(R, 0,)) 
predict the individual experimental measurements are also presented. 

An element in the family ((R, @,)I is identified by fixing the value of R, and then 
determining the value of 0, which minimizes S, where 
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5 10 15 20 

FIQURE 8. The family { (R ,  QJ} for Ca within the three different ranges: ( a )  0.013 < Cu < 0.014, (b )  
0.014 < Cu < 0.015, ( c )  0.015 < Ca < 0.016. Curve (i) is determined by minimizing S using 
experimental data associated with the four largest gap widths. Curve (ii) coincides with curve ( i )  
at R equals 10 pm, while satisfying (2.3). 

r (Pm) 

Here, (E&)i denotes the average experimentally measured (apex height/half gap 
width) a t  a particular gap width q corresponding to one of the three intervals of Ca 
indicated in table 2. The values of (hla)i are obtained from the tabulated values of 
@,,, using (5.1). The term M denotes the total number of gap widths being 
considered. The expression for the theoretically predicted (apex height/half gap 
width),f, results from substituting (3.2) and (3.31, both evaluated a t  x = 0,  into (3.1), 
giving 

{sin 0,- l} (1 -(in- 0,) sec OR} 
2 sin3 0, f tan 0, - sec 0, + p g q 2 / a  

where fc, is evaluated by interpolating between entries in table 1. The entire family 
{ (R, 0,)) is obtained by determining the value of 0, that minimizes S for every value 
of R within the matching region. 

The matching region and M must both be identified before { ( R , @ , ) }  can be 
determined. Strictly speaking, matching does not take place within a specific region ; 
rather, it has meaning only in a limiting sense. Nevertheless, we shall regard the 
matching region as the range of r within which the shape of the interface obeys (2.3) 
to the degree of accuracy inherent in our calculations. The portion of the matching 
region accessible by our calculations shall be denoted by 8. We have chosen 8 = 
{ T I  0.01 < r / a  < O. l } .  The lower bound is a consequence of the limitations of the 
accuracy of the calculations presented in $4. It represents the smallest value of R / a  
appearing in table 1 that can be used consistent with the values of 0, of interest. The 
upper bound represents the approximate value of r beyond which the geometry of 
the outer region has a noticeable effect on the interface shape. One direct consequence 
of these limits is the restriction imposed on the maximum value of M .  Since { R / q  I 
i = 1 , .  .. ,M)  must be in 8, the only values of 9 which can be used in the 

n FLM M9 
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(i) 

(ii) 

- 
0 0 191pm - 

0 617pm 

412pm 

50 55 60 65 

@,PP (deg.) 

FIGURE 9(a+b) .  For caption see facing page. 

determination of {(R,QR)j  by the method described above lie within the interval 
(0.01% < R < 0 . 1 ~ ) .  This assumes the elements of the set { q j  are ordered as follows 
st; > q. . . > G. In order for this interval to retain a reasonable size we have chosen 
M = 4. For example, when {q I i = 1,  . . . ,4} denote the four largest gap widths then 
{R16~10-~<R< 1 9 ~ 1 0 - ~ c r n ) .  

At a given value of Ca, the analysis is most accurate within regions where the 
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6) - 
0 - 617 pm 

(ii) 

0 

50 55 60 65 

FIQURE 9. Theoretically predicted values for the apparent contact angles for the four largest gap 
widths, and for Cu within the three different ranges: (a)  0.013 < Ca < 0.014, ( b )  0.014 < Ca < 
0.015, ( c )  0.015 < Cu < 0.016. The lines (i) and (ii) correspond to the predictions based on the {(R, 
8,)) of curves (i) and (ii) in figure 8, respectively. The values of O,,,, a,,, and Sip, are indicated 
by 0 at each gap width. 

eApp (deg.) 

interface experiences the least amount of viscous bending. Viscous bending decreases 
with increasing distance away from the moving contact line. Hence, the greater the 
value of the lower bound of R, the smaller the amount of viscous bending to the 
interface between R and the apex, and the greater the accuracy of table 1. Thus, the 
four largest gap widths have been used to determine the family {(R, 0,)). Curves (i)  
in figure 8 give the results of the calculations. The three separate evaluations in the 
figure correspond to the three intervals of Ca used to group the experimental data. 
The ability of {(R, 0,)) to predict the experimentally measured apex heights a t  the 
four gap widths is illustrated in figure 9. The length of the lines labelled (i) indicate 
the range of values of OAPP obtained using the evaluations in table 1 a t  the entire 
family {(R, 0,)) in (6.2) and (5.1). 

There are various features of these figures worth noting. Although each member of 
{ (R, 0,)) was obtained through a separate minimization calculation, the entire 
family predicts the same value of O,,, to within k0.5' a t  each gap width. This is 
a necessary characteristic in order for {(R, 0,)) to describe the shape of the interface 
within the matching region. The fact that {(R, 0,)) agrees well with (2.3) is illustrated 
by curves (ii) in figure 8, where (R, 0,) appearing in (2.3) is set equal to cm, 
51.39'), a member of {(R,O,)}. All of these features indicate agreement between 
theory and experiment. However, it is evident from figure 9 that a systematic 
deviation exists between theoretical predictions and experimental measurements of 
O,,, at the four different gap widths. It remains unclear whether this lack of 
agreement should be attributed to systematic errors in the experiments, inaccuracies 
in the theoretical calculations, or, the inappropriateness of the approach presented 
in $2 for analysing moving contact line problems. 

8-2 
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a 
a 

a 
0 

0 10 20 30 40 50 60 

r (Pm) 

FIGURE 10. The variation of the slope of the interface generated by table 1 for 0,  a = 191 pm; ., a = 617 pm, and -, (2.3), all assuming (R,  0,) = (10 pm, 51.39'). 

We conclude with some comparisons among different theoretical evaluations of the 
interface shape which serves to  illustrate the extent of some of the errors present in 
our calculations. Regardless of the appropriateness of the approach presented in $2 
to describe the experiments, all of the points on curves (ii) in figure 8 should predict 
(using table 1, (5.1), and (6.2)) the same value of OApp a t  each gap width. Instead, 
a range of values are predicted as indicated by each line (ii) in figure 9. This could be 
a consequence of computational inaccuracies, or of locating the range of R too far 
from the moving contact line. It is of interest to note that the length of lines (i) in 
figure 9 obtained using the experimental data, are no longer than (ii). The degree to 
which represents the matching region can be further illustrated by comparing the 
shape of the interface given by (2.3) setting (R, 0,) equal to cm, 51.39"), with 
that generated by table 1 for the largest and the smallest of the four gap widths ; refer 
to figure 10. Our solutions begin deviating from (2.3) a t  approximately dimensionless 
T equal to 0.07, somewhat less than the value of 0.1 assumed above. 

7. Discussion 
The objective of this study has been to determine the appropriate boundary-value 

problem which describes the dynamics of the fluid excluding that lying in- 
stantaneously in the immediate vicinity of the moving contact line. We chose to 
investigate the validity of the boundary-value problem defined in the outer region 
generated by using a slip boundary condition on the surface of the solid. In  $2 it was 
shown that the boundary condition originating from the matching region can be 
expressed in a form containing one measurable parameter, refer to (2.3). (It is worth 
noting that there may be a plethora of mechanisms describing the behaviour of the 
fluid in the immediate vicinity of the moving contact line consistent with (2.3) 
besides slip boundary conditions. Thus, establishing the validity of (2.3), in and of 
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itself, does not imply that the fluid slips along the surface of the solid.) Thus, the 
boundary-value problem in the outer region can be re-expressed in a form containing 
no explicit reference to a slip boundary condition. Thus, the heart of our investigation 
has focused on establishing the extent to which (2.3) accurately describes the shape 
of the fluid interface near the moving contact line in the outer region asymptotically 
as r + 0, and for small values of Ca. 

The validity of (2.3) was investigated using an indirect technique. It is based upon 
our derived relationship (6.2) between the slope of the interface within the matching 
region, OR, evaluated a t  a radial distance, R, from the moving contact line and the 
apex height of the meniscus, h,  the quantity measured in our experiments. Our 
technique for determining 0, was presented in $6. It consists of identifying the value 
of 0, which minimizes the deviation between theoretically predicted and 
experimentally measured values of h / a  over a range of gap widths. The dependence 
of the slope of the fluid interface on the radial distance from the contact line is 
obtained by repeating this calculation for a range of values of R corresponding to 
the matching region. The results of these calculations are denoted by the family 

Comparisons between theory and experiment appear in $6. They consist of: 
(i) determining the extent to which {(R, 0,)) satisfies (2.3), where the terms ( r ,  19) and 
(R,O,) appearing in (2.3) denote any two members of the family {(R,@,)}, and, 
(ii) calculating the values of h / a  using any member of {(R, 0,)) and all the different 
gap widths, and comparing these values to the experimental measurements. Our 
principal results are contained in figures 8 and 9. As discussed in $6, we feel that they 
indicate agreement between theory and experiment, although falling somewhat short 
of being definitive. Figure 8 illustrates rather close agreement between (2.3) (curve 
ii), and the slope of the interface determined by our indirect method (curve i). The 
fact that every point on curve (i) in figure 8 predicts the same value of O,,, (an 
alternative representation of h /a ,  refer to (5.1)) at each gap width (more precisely, 
the prediction is to  within f0.5" of the same value of O,,,), is illustrated by curve 
(i) in figure 9. On the other hand, i t  is evident from the three comparisons in figure 
9, corresponding to the different contact line speeds, that the theory consistently 
predicts a weaker dependence of O,,, on the gap width that that measured 
experimentally. Even if we restrict our attention to the case giving the best 
agreement between theory and experiment, that  corresponding to a Ca of 0.0155, one 
still finds a systematic, as opposed to a random, deviation between the predictions 
and the measurements. 

The cause of the systematic deviation between the theory and the experiments is 
a t  this point unclear. The most obvious potential source arises from the fact that the 
theory accounts for only the two lowest orders in an asymptotic expansion in Ca 
valid in the limit as Ca-t 0. A value of Ca of the order of lop2 may be too large to 
be accurately covered by such a theory. It is interesting to note that at these values of 
Ca our calculations indicate that the O(Ca) mode is already contributing about 10 YO 
of the slope in the matching region. 

{(R, 

Appendix 
The variable r is made dimensionless with a in the Appendix. The asymptotic form 

of the stream function valid in the limit as z -+ 0 and 2 + 1 corresponding to the lowest- 
order velocity field will be identified. The most straightforward approach makes 
use of the local polar coordinate system ( r ,  #) given by the following relationships: 
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1 - x = r sin q5 ; z = - r cos q5. In this coordinate system the boundary conditions are : 
a z @ / a p  = 0 and @ = 0 on 9 = 0, for r > 0;  and, .-%@/a$ = -1 and @ = 0 on 
q5 = 0 for r > 0. It is easily shown that a solution for @ is given by 

r sin 2 0 ,  
@ - {sin $ - $[tan 0, sin $ + cos q5]} -?-sin$: 

sin 2 0 ,  - 20, 

or, equivalently by 

9 - { 1 -x+ [(I  -2) tan 0,-z ]  - l + x .  ( A l )  

It is readily established that 

(in tan 0, - 1) sin 2 0 ,  
on z = 0-. a@ -- l +  

ax sin 2 0 ,  - 20, 

Since the above is not zero, Smith’s technique cannot be used to solve for flr in the 
slot. For this reason flr has been expressed as the superposition of three parts. Within 
the corner region this corresponds to 

@ - x-1+@,+@,, 

where f l r A  is defined so that a@/,/ax+ 0 as x+ 1 on z = 0, permitting Smith’s 
technique to be used to solve for @/,. It is evident from (4.10b) that @ A  has been so 
defined. 

The local forms of @, and @/, can be identified. Since a2@A/i3z2 - 0 and 

a@, (in tan 0, - 1) sin 20, 
- w  

ax sin 2 0 ,  - 2 0 ,  , 

on z = 0 as x + 0, and both @, - 0 and a@,/ax - 0 on x = 1 as z + 0, it can readily 
be verified that 

sin 2 0 ,  (1-4 (tan@,-$r) (1-x) arctan-. 
‘ A  sin 2 0 ,  - 2 0 ,  z 

Subtracting x- 1 and (A 2 )  from (A 1) gives 

@CB - { l-x+[:(l-x)--z]arctan-- (1 - x)} sin 2 0 ,  
z sin 20, - 20, ’ 

Thus, we have 
sin 2 0 ,  

on x = 0, a2flrB 2 -- N - 
az2 1 -x sin 2 0 ,  - 2 0 ,  

and 

-- a ’ @ ~  o o n z = ~ .  
a x 2  

These are the limiting forms of the expressions for b, and b, on z = 0 as x + 1 used in 
(4.29). 
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